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Teaching Robot Kinematics for Engineering Technology Students Using a 

Visualized Three-Dimensional Robot and a Camera 

 

Abstract 
Teaching robot kinematics is important to engineering technology students in the 

robot automation. The study can help students not only in the coordinate 

transformation principles from a joint to its following joint in a robot, but also in 

relating the coordinate systems between a robot and a machine vision system. 

While students can utilize math software to compute robot kinematic 

transformations, they have problems verifying their answers. In this paper, a three 

dimensional vertically articulated robot is created to help students visualize the 

location and orientation of the end effector. Students can check their robot 

kinematic answers based on the joint encoder values set up at each joint. In 

addition, a camera is also mounted on the robot for the students to relate an object 

location from the camera coordinate system to the robot world frame.  

 

1. Introduction 

A robot is typically connected by a series of links and joints. A robot hand, or end 

effector, is attached at the end of the wrist joint to pick up objects, transfer parts, 

and perform useful tasks1. Depending on the number of freely-movable joints 

available in a robot, it can move to multiple directions and can be called multiple 

degrees of freedom (DOF)2. Figure 13 shows a 2-DOF robot as it has two joint 

variables, Ѳ1 and Ѳ2. Figure 24 shows a typical 6-DOF industrial robot with the 

first three joints (waist, shoulder, and elbow) controlling the motion to a target 

location, and the last three joints (roll, pitch, and yaw) controlling the orientation 

of the end effector, as shown in Figure 35.  

Robot kinematics is one of the main topics in teaching robot automation class. It 

studies the movement of the location and orientation of any link from the world 

frame in a robot manipulator6. As the robot performs works using its end effector, 

the location and orientation of the end effector based on the robot world frame is of 

particular interest when joint variables are given. The [4x4] homogeneous 

transformation matrices3,7 are used in teaching this class mainly based on the 

following two reasons: 
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a. It can well represent the location and orientation of a rigid body in a math 

form. 

b. Since it is a square [4x4] matrix, it can be placed in any order of matrix 

multiplications. 

 

 

Figure 1: A 2-DOF Robot 

P
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Figure 2: A Typical 6-DOF Industrial Robot 

 

 

Figure 3: The Wrist Joints of a Robotic Hand 

However, as the matrix multiplication in general is not commutative, students have 

problems calculating correct answers even though they are allowed to use math 

P
age 26.1485.4

Roll 

Waist 
Rotation 

I 
I 

(Pvaw 

Shoulder 
Rotation 

-~ Elbow 
ii- ,,Rotation 
/4 

/ 

····, .. _ Wrist , 
··- Joint (Three Rotation 

Angles) 

' --0 Pitch l.;'-..... 



www.manaraa.com

software8 for homework assignments. Thus, a visualized tool is presented for 

students to check their answer before submitting their assignments. 

 

2. Homogeneous Transformation Matrices 
A homogeneous transformation matrix, which can be used to define a local frame, 

is listed as following5: 

[

𝑛𝑥 𝑜𝑥 𝑎𝑥 𝑑
𝑛𝑦 𝑜𝑦 𝑎𝑦 𝑒

𝑛𝑧 𝑜𝑧 𝑎𝑧 𝑓
0 0 0 1

] 

Figure 4 shows the local frame based on the world frame XYZ. Point (d,e,f), based 

on the robot world frame, is the origin of this local frame. The following three unit 

vectors n, o, and a, can be expressed as: 

�⃑⃑� = 𝑛𝑥𝑖 + 𝑛𝑦𝑗 + 𝑛𝑧�⃑�          (1) 

�⃑� = 𝑜𝑥𝑖 + 𝑜𝑦𝑗 + 𝑜𝑧�⃑�          (2) 

�⃑⃑� = 𝑎𝑥𝑖 + 𝑎𝑦𝑗 + 𝑎𝑧�⃑�          (3) 

 

Figure 4: Local Frame Based on the World Frame 

Where nx, ny,, and nz  represent a unit vector component for the local x vector along 

the robot world frame; ox, oy,, and oz  represent a unit vector component for the 

local y vector along the robot world frame; ax, ay,, and az  represent a unit vector 

component for the local z vector along the robot world frame. 

P
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To completely describe the motion of each transformation, the following six 

elementary homogeneous transformation matrices are used in teaching robot 

kinematics6: 

𝑇𝑟𝑎𝑛𝑠(𝑥, 𝑑) =  [

1 0 0 𝑑
0 1 0 0
0 0 1 0
0 0 0 1

]        (4) 

𝑇𝑟𝑎𝑛𝑠(𝑦, 𝑒) =  [

1 0 0 0
0 1 0 𝑒
0 0 1 0
0 0 0 1

]        (5) 

 

𝑇𝑟𝑎𝑛𝑠(𝑧, 𝑓) =  [

1 0 0 0
0 1 0 0
0 0 1 𝑓
0 0 0 1

]        (6) 

 

𝑅𝑜𝑡(𝑥, 𝛼) =  [

1 0 0 0
0 cos (𝛼) − sin( 𝛼) 0
0 sin( 𝛼) cos (𝛼) 0
0 0 0 1

]      (7) 

 

𝑅𝑜𝑡(𝑦, 𝛽) =  [

cos (𝛽) 0 sin( 𝛽) 0
0 1 0 0

−sin( 𝛽) 0 cos (𝛽) 0
0 0 0 1

]      (8) 

 

𝑅𝑜𝑡(𝑧, 𝛾) =  [

cos (𝛾) − sin(𝛾) 0 0
sin(𝛾) sin(𝛾) 0 0

0 0 1 0
0 0 0 1

]      (9) 
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2.1. Example Using a Visual Tool to Check Elementary Transformation 

Matrices 

To help students verify their answer using a CAD system, the following example is 

given: 

Problem: Please determine the location of a point (1,2,3) after it rotates 60º around 

the Z axis of the world frame. 

Solution: The following four steps are used to help students verify their solutions: 

Step 1: List the equation using elementary transformation matrices, as shown in 

Equation (10). 

Rot(Z, 60º)Trans(x,1)Trans(y,2)Trans(z,3)      (10) 

Step 2: Apply math software to obtain the solution, as shown in Figure 5. 

 

Figure 5: Using Math Software to Obtain the Answer 

Step 3: Using a CAD system, create a point (1,2,3) based on the world frame, as 

shown in Figure 6. 
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a.= 6 0 
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Figure 6: Point (1,2,3) Created in a CAD System 

Step 4: Rotate Point (1,2,3) by 60º around Z axis in the CAD system and verify the 

location of the point, as shown in Figure 7.  

 

Figure 7: Verify Point Location after Point (1,2,3) Rotates 60º around the Z axis 
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Step 5: Compare the answers in Step2 and Step 4. Both have the same answer: (-

1.2321, 1.866, 3.00).  If the answers are different and if the operation in Step 4 is 

confirmed correctly, go back to check Steps 1 and 2. 

 

3. A Visualized Three-Dimensional Robot for Robot Kinematics 

To help students verify their solutions for robot kinematics, Figure 8 shows a 

three-dimensional vertically articulated robot when all joint variables are at zero 

positions. Dimensions of each link are also provided. The origins of each link are 

shown in Figure 9. For students to verify their kinematic solutions, a verifying 

point (VP) is drawn at the origin of the end effector, as shown in Figure 10. 

 

Figure 8: A Visualized Three-Dimensional Robot 

P
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Figure 9: Joint Origins of Each Link 

 

 

Figure 10: A Verifying Point Created to Verify the Location of the Wrist Joint 

 

3.1. Robot Kinematics 

To perform the transformation from one joint to its following joint, the Denavit 

Hartenberg (DH) transformation6, shown in Equation (11), is applied: 

P
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𝐴𝑖 = 𝑅𝑜𝑡 (𝑧, Ѳ𝑖)𝑇𝑟𝑎𝑛𝑠(𝑧, 𝑑𝑖)𝑇𝑟𝑎𝑛𝑠(𝑥, 𝑎𝑖)𝑅𝑜𝑡(𝑥, 𝑡𝑖)    (11) 

Where 𝐴𝑖 is the transformation from Joint i to Joint i+1; Ѳ𝑖 is the joint variable 

when the joint is a revolution joint; 𝑑𝑖 and 𝑎𝑖 can be the link lengths depending on 

the robot configuration; 𝑡𝑖 represents the twist angle between Joint i and Joint i+1. 

In some particular cases, 𝑅𝑜𝑡(𝑥, 𝑡𝑖) can be replaced with 𝑅𝑜𝑡(𝑦, 𝑡𝑖) when the twist 

angle is along the Y axis. 

From the information provided from Figure 9, the 𝐴𝑖 matrix for each link can be 

expressed as following: 

𝐴1 = 𝑅𝑜𝑡 (𝑧, Ѳ1)𝑇𝑟𝑎𝑛𝑠(𝑧, 36)𝑅𝑜𝑡(𝑥, 90°)      (12) 

𝐴2 = 𝑅𝑜𝑡 (𝑧, Ѳ2)𝑇𝑟𝑎𝑛𝑠(𝑥, 40)        (13) 

𝐴3 = 𝑅𝑜𝑡 (𝑧, Ѳ3)𝑇𝑟𝑎𝑛𝑠(𝑥, 11)𝑅𝑜𝑡(𝑌, 90°)      (14) 

𝐴4 = 𝑅𝑜𝑡 (𝑧, Ѳ4)𝑇𝑟𝑎𝑛𝑠(𝑧, 14) 𝑅𝑜𝑡(𝑦,−90°)     (15) 

𝐴5 = 𝑅𝑜𝑡 (𝑧, Ѳ5)𝑅𝑜𝑡(𝑌, 90°)        (16) 

𝐴6 = 𝑅𝑜𝑡 (𝑧, Ѳ6)𝑇𝑟𝑎𝑛𝑠(𝑧, 4)        (17) 

The following equation is applied to calculate the Verifying Point (VP) based on 

the robot world frame: 

𝑇𝑉𝑃 = 𝐴1 𝐴2 𝐴3𝐴4 𝐴5 𝐴6          (18) 

The following joint variables are used to compute the location of the VP: Ѳ1 =

30°; Ѳ2 = 45°; Ѳ3 = −60°; Ѳ4 = −20°; Ѳ5 = −60°. Figure 11 shows the 

execution of the math script for the VP: (46.94, 25.73,54.15). 

P
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Figure 11: Math Script for the Location of the Verifying Point Based on the Robot 

World Frame 

 

Figure 12 shows the final location of the Verifying Point after moving the robot 

with same joint variables used in the math script. By checking the location of the 

VP, it has the same answer as that of the math script, as shown in Figure 11. P
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Figure 12: Rotating Robot Arms Based on the Joint Variables and Check the 

Location of the Verifying Point  

 

3.2. Kinematic Transformation for a Mounted Camera 

To help student study the kinematic transformation for a machine vision and a 

robot, Figure 13 shows a camera mounted at the end of Joint 6 with location 

dimensions.  

Equation (19) shows the transformation from VP to the camera origin: 

𝐴𝐶𝑎𝑚𝑒𝑟𝑎 = 𝑇𝑟𝑎𝑛𝑠(𝑦, 6.5)𝑇𝑟𝑎𝑛𝑠(𝑥 − 0.5)𝑅𝑜𝑡 (𝑥, 180°)       (19) 

Equation (20) is applied to calculate the location of the origin of the camera 

coordinate system based on the world frame: 

𝑇𝐶𝑎𝑚𝑒𝑟𝑎𝑂𝑟𝑖𝑔𝑖𝑛 = 𝑇𝑉𝑃 𝐴𝐶𝑎𝑚𝑒𝑟𝑎  𝑇𝑟𝑎𝑛𝑠(𝑥, 0.5)        (20) 

Where 𝑇𝐶𝑎𝑚𝑒𝑟𝑎𝑂𝑟𝑖𝑔𝑖𝑛 is the location of the camera origin based on the robot world 

frame. 
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For verifying purpose, Equation (21) shows the transformation from a point (0.5, 

0.5) measured from the camera coordinate system to the robot world frame: 

𝑇𝐶𝑎𝑚𝑒𝑟𝑎𝑝𝑜𝑖𝑛𝑡 = 𝑇𝑉𝑃 𝐴𝐶𝑎𝑚𝑒𝑟𝑎  𝑇𝑟𝑎𝑛𝑠(𝑥, 0.5) 𝑇𝑟𝑎𝑛𝑠(𝑦, 0.5)    (21) 

Result of the transformation in math script is shown in Figure 14 and is verified by 

the robot, as shown in Figure 15. 

 

Figure 13: Location of the Camera Origin Based on Joint 6 
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Figure 14: Math Script for Equation (21) 

 

 

 
Figure 15: Verifying the Result of Equation (20) 

 

3.3. Kinematic Transformation for the Location of an Object from the 

Mounted Camera to the Robot World Frame 
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Figure 16 shows that the visualized robot is configured so that it will pick up an 

object in the vertical (Z axis) direction of the robot world frame. The following 

joint variables are selected: Ѳ1 = 0°; Ѳ2 = 45°; Ѳ3 = −60°; Ѳ4 = 0°; Ѳ5 =

−75°; Ѳ6 = 90°. By substituting these joint variables into Equations (12) to (17) 

and then using Equations (18) to (20), the location of the camera origin, TCameraOrign, 

can be found as (51.9324,-6.500, 53.8138), as shown in Figure 16 from math 

script. 

 

Figure 16: Location of the Camera Origin 

An object (sphere) is created with its center located at (30, 10, 2) based on the 

robot world frame, as shown in Figure 17.  

 

Figure 17: A Sphere Created with Its Center Located at (30, 10, 2) 
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Figure 18 shows that the center location of the sphere is (-21.9324, 16.5000, -

51.8138) measured from camera origin. Since this is the information which can be 

obtained from a machine vision system, Equation (22) is applied to covert this 

location to be based on the robot world frame: 

𝑇𝑜𝑏𝑗 = 𝑇𝐶𝑎𝑚𝑒𝑂𝑟𝑖𝑔𝑖𝑛𝑇𝑟𝑎𝑛𝑠(𝑥, −21.9324) 𝑇𝑟𝑎𝑛𝑠(𝑦, 16.5) 

                             𝑇𝑟𝑎𝑛𝑠(𝑧,−51.8138)      (22) 

Where 𝑇𝑜𝑏𝑗 represents the location of the sphere based on the robot world frame. 

Figure 18 shows the result of 𝑇𝑜𝑏𝑗  calculated from math script. Result shows that 

using the robot kinematic transformation can calculate the correct location of the 

sphere verified from Figure 17. 

 

 

Figure 18: Location of the Sphere When Measured from Camera Origin 
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Figure 19: Location of the Sphere Calculated from Math Script 

 

By changing the location of the sphere in Figure 17 and verifying the new location 

from Figure 18, students can repeat the computation using Equation (22).  

 

4. Testing Results 

Before the visualized robot was applied in teaching robotic kinematics, most 

students were not enthusiastic about this topic mainly because of matrices were 

heavily involved in calculating final answers. As a result, less than 50% of the 

students passed this topic. After math software and the visualized robot were 

introduced in the class, students were able to use math software to formulate their 

kinematic equations and verify their answers using the robot. The test performance 

was significantly improved with approximately 80% passing rate in this topic. The 

sample size involved in the test performance assessment is forty eight students.  

 

5. Summary 
Combination of the visualized robot and math script provide an effective tool for 

engineering technology students to study robot kinematic transformation. The math 

script can be applied to formulate the homogeneous transformation matrices by 

allowing changing the variables in a matrix. The visualized robot can be utilized to 

verify the answers for questions created by the instructor. More verifying points 

can be created at each joint of the robot so that students can have a step-by-step 

checkup of their kinematic problems. When a camera is attached on the robot and 

the location of an object is sensed by the camera, the robot and math script can also 

be applied to verify the coordinate transformations between a robot and a camera.  
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